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Power-Capping

• Power management technique that enables setting a maximum power limit on a device 
and it dynamically adjusts the power utilization to be under the defined limit

• New-generation architectures, such as NVIDIA’s GH200 superchip, regulate both CPU 
and GPU simultaneously

• It incorporates the automatic power-steering system and dynamically reallocates 
power between the CPU and the GPU based on their usage; preference on the CPU

• Limits are enforced through Dynamic Voltage and Frequency Scaling (DVFS) for CPU and 
GPU

• More significant impact on compute-intensive workloads than memory-bound tasks
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Overview of the NVIDIA GH200 Superchip

Key Features:

• 72-core Arm Neoverse-V2 CPU (Grace)

• Hopper GPU with 96GB HBM3

• Integrated CPU-GPU memory architecture

Peak Power Consumption: Up to 1kW

Challenges:

• Managing power across CPU, GPU, & I/O

• High-resolution monitoring for 
transient power spikes

Architecture NVIDIA GH200
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Motivation

HPC Power Challenges

Increasing power consumption in modern 
superchips (e.g., NVIDIA GH200)

Need for fine-grained power and energy 
optimizations

Moore’s Law slowdown and efficiency trade-
offs

Why Fine-Grained Power 
Analysis?

Identifying power spikes and inefficiencies

Optimizing application performance and 
energy use

New architectures have more knobs to 
control power utilization.

What power-capping setting is more suitable for a GPU task to achieve 
energy efficiency?
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Related Work

• CPU-GPU power management with heuristic or machine learning methods have been 
explored 

• Greenup, Powerup, and Speedup (GPS-UP) framework to categorize optimizations by 
their impact on execution time, power, and energy efficiency

• Fine-grained power-capping strategies, such as the Global Extensible Open Power 
Manager have proven more effective than static limits

• We utilize the automatic power steering of the GH200 when setting a given power cap, 
and analyze the impact of energy and runtime performance of the most suitable power 
capping setting as suggested by two decision-makers metrics
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LSMS (Locally Self-consistent Multiple Scattering)
DFT First Principles Calculations for Large Systems

• LSMS solves the Schrödinger 
or Dirac equation for electrons 
in solids within Density 
Functional Theory for alloy 
large systems and magnetic 
materials. 

• ORNL’s exascale application

• One of the most  ORNL's 
power-hungry HPC applications

• Open source: 

https://github.com/mstsuite/lsms 

First principles investigation of solid state phase transitions Markus Eisenbach

Figure 4. The core structures of NiCoFeCrMn. The pseudo atomic structures of the dislocations are

colored by their calculated hydrostatic pressures calculated. [7]

vacancy. The calculated vacancy migration barriers also span awider range compared with simple

elemental or dilute binary alloys. A larger barrier is calculated for vacancy exchange with Fe relative to Ni,

Mn, or Cr. Atomic-level stress calculation can provide aqualitative elemental segregation trend of di↵erent

atomic species at the grain boundary, which agrees fairly well with previous ion irradiation study of

NiFeMnCr HEA. [8]

In disordered alloyscomposed of midperiod 3d transition-metal elements, magnetism iswell known to play

an important role in determining their properties. First, magnetic entropy makes a substantial contribution

to the Gibbs free energy, thereby a↵ecting thermodynamic phase-stability-related phenomena, such as

order-disorder, and structural phase transitions, e.g., fcc-hcp transitions that are controlled by the stacking

fault energies. In addition, magnetism can have a large impact on other properties, including mechanical

properties, electronic and thermal transport, and thermal expansion, such as the Invar e↵ect in iron-nickel

alloys, and it also holds promise for functional applications, such as giant spin-orbit torque. Here we study

the magnetic properties of the medium-entropy NiCoMn alloy. We performed first principles calculations

for di↵erent spin configurations and disordered local moment (DLM) states. Spin interaction parameters

were extracted from thesefirst principles calculations and used in classical Monte-Carlo simulations of the

finite temperature behavior of NiCoMn. A snapshot from these calculations is shown in fig. 5. The

Monte-Carlo calculations findsa magnetic transition temperature of TC = 219K. Unfortunately there is not

yet an experimental value available for TC in NiCoMn. Wehaveverified that the ground state of NiCoMn

disordered solid solution alloys is the DLM-Mn state. The DLM-Mn state distinguishes two equally

populated groups of Mn atoms, with large spin moments but opposite spin orientations. n the DLM-Mn

ground state, the magnetic scattering is almost saturated at zero temperature due to the antiparallel spin

alignments between Mn atoms. Additionally, we found that a hydrostatic pressure of 50 kbar quenches the

magnetism of NiCoMn, and that the resistivity is strongly correlated with the magnetism. This suggests a

modest and positive contribution to the resistivity from thermal expansion. [9]

These results have been published in Journal of Applied Physics [8] and Physical Review Materials [9].
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Weak scaling of LSMS on Summit. 
128 atoms on 3 nodes to 216,000

atoms on 4,500 nodes.

Dislocation core structure in NiCoFeCrMn alloy Magnetism in FePt. Nature 542, 75 (2017)
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HPC Application – LSMS 
Energy/Power Data

Power and total energy consumption, including CPU and GPU components 
(no power capping).
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HPC Application LSMS – GPU Task Breakdown

Investigation of GPU tasks ---  kernels within the application and GPU inactivity phases:

• sm90_gemm_ts64x64x32: Compute-intensive cuBLAS zgemm operation; typically 
compute-bound

• buildKKRMatrix: Matrix construction primarily involving memory operations; memory-
bound.

• sm90_gemm_ts32x32x32: Another compute-intensive cuBLAS zgemm kernel; compute-
bound

• getrf_pivot kernels: Lower-upper factorization with pivoting; constrained by random 
memory accesses

• trsm_left_kernel: Triangular matrix solve (BLAS); typically memory-bound due to data 
access patterns

•  gpu compute idle: Periods in which computations only occur on the CPU
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HPC Application LSMS – GPU Task Breakdown

Measurements at the default power setting (1,000 W, no power capping) per GPU kernel 
and GPU compute idle time.
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Methodology

• Measure energy, power and runtime performance at the superchip level for the entire 
application, and focus on the CPU- and GPU-level per GPU task (kernel and GPU inactivity 
phase)

• Incremental chip-level power constraints on NVIDIA's GH200 superchip (with automatic 
power-steering system), ranging from 200 W to the maximum power limit of 1,000 W 
(default)

• Power data collection with Score-P and custom Performance Application Programming 
Interface (PAPI) component designed to read power information via the Linux 
/sys/class/hwmon interface

• Metrics calculation to decide on the "best" power capping settings per GPU task
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Custom Score-P 
Library Wrapper 
plugin for ARMPL

Extended PAPI Component
For power measurements 
in GH200

Score-P plugins PAPI components Extended OTF-2
Utility

PAPI

NVMLCUDACoreTemp Hwmon (Power, 
Temperature)

Score-P (MPI, OpenMP, CUDA, Scientific Libraries Wrappers)

Async PAPI plugin Async NVML plugin
ARM Performance

Library (APL) Wrapper 
Plugin

NVIDIA HPC SDK
GH200

/sys/class/hwmon/hwmonX

OTF2-to-
Parquet

OTF-2

Energy calculation
for fine-grained 
regions
(Jupyter Notebooks)

Data Analytics for
Power/Energy studies

Parquet 
Trace

Extended Components

• PAPI extension for hwmon to measure Superchip      and Grace CPU 
power

• Score-P NVML and PAPI plugins readings

• Runtime overhead per run for the power measurements was 1.3%

• OTF2-to-Parquet conversion utility

• Jupyter-based analytics for energy profiling

The Open-Source Performance Toolkit for Power/Energy

Supported Architectures

• GH200, potential for AMD Instinct and other platforms

Based on tools from: 

Python Data Analytics

https://dl.acm.org/doi/10.1145/3703001.3724383

https://dl.acm.org/doi/10.1145/3703001.3724383
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Decision-maker Metrics
for "best" power capping settings

• Normalization of energy and runtime 
metrics using the feature scaling 
normalization method

• Euclidean distance of normalized 
energy and runtimes from point (0,0)

Speedup-Energy-Delay Euclidean Distance of normalized energy/runtime

• Calculation of speedup energy-delay 
from the baseline (runtime1 and 
energy1) - no power capping (1,000W)
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Experimental Evaluation

Speedup-energy-delay per GPU task and power-cap setting. 
Higher is better.
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Experimental Evaluation

Euclidean distance of normalized energy/runtime per GPU task 
and power-cap​ setting. Lower is better.
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Experimental Evaluation

Runtime increase (%) and Energy reduction (%): default power compared​ with 
the most suitable power setting identified by speedup-energy-delay (SED) 
and ​Euclidean distance (ED) per GPU task.

* SED = speedup-energy-delay
 ​ ED = Euclidean distance
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Conclusion

• Investigation of GPU task-specific power-capping with NVIDIA GH200 superchip’s 
automatic power-steering system

• Evaluation of two metrics—speedup-energy-delay and Euclidean distance–based 
normalization—to determine optimal power limits per computational GPU task

• Comparing the optimal power-capping settings suggested by each one, the 
Euclidean distance–based normalization is affected by the data distribution differently 
than the speedup-energy-delay; ED more biased towards energy

• Significant energy savings are achievable through fine-grained power management

• In the future, we will extend these methodologies, develop strategies for additional 
domains, and adaptive power-capping optimizations
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