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Power-Capping

« Power management technique that enables setting a maximum power limit on a device
and it dynamically adjusts the power utilization to be under the defined limit

* New-generation architectures, such as NVIDIA's GH200 superchip, regulate both CPU
and GPU simultaneously

* |t incorporates the automatic power-steering system and dynamically reallocates
power between the CPU and the GPU based on their usage; preference on the CPU

« Limits are enforced through Dynamic Voltage and Frequency Scaling (DVFS) for CPU and
GPU

« More significant impact on compute-intensive workloads than memory-bound tasks
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Overview of the NVIDIA GH200 Superchip

NVIDIA GH200

Key Features:

« 72-core Arm Neoverse-V2 CPU (Grace)

* Hopper GPU with 96GB HBM3
 Integrated CPU-GPU memory architecture

Peak Power Consumption: Up to TkW
Challenges:
« Managing power across CPU, GPU, & 1/0

« High-resolution monitoring for
transient power spikes
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Motivation
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HPC Power Challenges Why Fine-Grained Power
Analysis?
Increasing power consumption in modern |dentifying power spikes and inefficiencies
superchips (e.g., NVIDIA GH200) Optimizing application performance and
Need for fine-gre}ingd power and energy energy use
optimizations New architectures have more knobs to
Moore's Law slowdown and efficiency trade- control power utilization.

offs

What power-capping setting is more suitable for a GPU task to achieve

energy efficiency?
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Related Work

« CPU-GPU power management with heuristic or machine learning methods have been
explored

« Greenup, Powerup, and Speedup (GPS-UP) framework to categorize optimizations by
their impact on execution time, power, and energy efficiency

* Fine-grained power-capping strategies, such as the Global Extensible Open Power
Manager have proven more effective than static limits

« We utilize the automatic power steering of the GH200 when setting a given power cap,
and analyze the impact of energy and runtime performance of the most suitable power
capping setting as suggested by two decision-makers metrics
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LSMS (Locally Self-consistent Multiple Scattering)
DFT First Principles Calculations for Large Systems

« LSMS solves the Schrodinger
or Dirac equation for electrons
in solids within Density
Functional Theory for alloy
large systems and magnetic
materials.

ORNL's exascale application

One of the most ORNL's
power-hungry HPC applications

Open source:

https://github.com/mstsuite/Isms
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MAE (meV / atom)

Weak scaling of LSMS on Summit.
128 atoms on 3 nodes to 216,000 |
atoms on 4,500 nodes.
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HPC Application - LSMS
Energy/Power Data

Power over Time Energy Usage of Systems for 1000W cap
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HPC Application LSMS - GPU Task Breakdown

Investigation of GPU tasks - kernels within the application and GPU inactivity phases:

« sm90_gemm_ts64x64x32. Compute-intensive cuBLAS zgemm operation; typically
compute-bound

 buildKKRMatrix: Matrix construction primarily involving memory operations; memory-
bound.

« sm90_gemm_ts32x32x32: Another compute-intensive cuBLAS zgemm kernel; compute-
bound

 getrf_pivot kernels: Lower-upper factorization with pivoting; constrained by random
Memory accesses

 trsm_left_kernel: Triangular matrix solve (BLAS); typically memory-bound due to data
access patterns

gpu compute idle: Periods in which computations only occur on the CPU
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HPC Application LSMS - GPU Task Breakdown

Task Total Time (s)|# Calls|Total Energy (J)|Avg. Power (W)
sm90 gemm ts64x64x32 77.89| 21,632 35,361.83 454.02
buildKKRMatrix 34.90 128 12,867.73 368.74
sm90 gemm ts32x32x32 8.03| 94,208 4,076.98 507.51
getrf pivot(1) 4.07| 16,384 2,694.54 662.05
getrf pivot(2) 4.07| 30,720 2,670.36 656.11
trsm left kernel 3.57| 150,272 2,328.26 651.57
getrf pivot(3) 1.82 8,192 1,146.70 630.06
gpu compute idle 8.83| 601,345 2,425.49 274.80

Measurements at the default power setting (1,000 W, no power capping) per GPU kernel
and GPU compute idle time.
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Methodology

« Measure energy, power and runtime performance at the superchip level for the entire
application, and focus on the CPU- and GPU-level per GPU task (kernel and GPU inactivity
phase)

 Incremental chip-level power constraints on NVIDIA's GH200 superchip (with automatic
power-steering system), ranging from 200 W to the maximum power limit of 1,000 W
(default)

« Power data collection with Score-P and custom Performance Application Programming
Interface (PAPI) component designed to read power information via the Linux
/sys/class/hwmon interface

Metrics calculation to decide on the "best" power capping settings per GPU task
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The Open-Source Performance Toolkit for Power/Energy

s
Score-P (MPI, OpenMP, CUDA, Scientific Libraries Wrappers) jupyter

~ Python Data Analytics
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Extended Comp?nents . Supported Architectures
«  PAPI extension for hwmon to measure Superchip  and Grace CPU . .
power * GH200, potential for AMD Instinct and other platforms
« Score-P NVML and PAPI plugins readings Based on tools from:
*  Runtime overhead per run for the power measurements was 1.3%
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« Jupyter-based analytics for energy profiling
%OAK RIDGE https://dl.acm.org/doi/10.1145/3703001.3724383

National Laboratory



https://dl.acm.org/doi/10.1145/3703001.3724383

Decision-maker Metrics
for "best" power capping settings

Speedup-Energy-Delay Euclidean Distance of normalized energy/runtime

« Normalization of energy and runtime
metrics using the feature scaling
normalization method

 Calculation of speedup energy-delay
from the baseline (runtime1 and
energy1) - no power capping (1,000W)
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Experimental Evaluation
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Experimental Evaluation
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Euclidean distance of normalized energy/runtime per GPU task

LOAKR and power-cap setting. Lower is better.
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Experimental Evaluation

* SED = speedup-energy-delay
ED = Euclidean distance

%

Power Cap (W) |Energy (%) |Runtime (%)
e ian SED |ED SED| ED|SED ED
sm90 gemm ts64x64x32 900 600 0.85 3.42| 0.00 10.3
buildKKRMatrix 300 300 22.92( 22.92111.30 11.30
sm90 gemm ts32x32x32 400 400 31.40| 31.40|28.42 28.42
getrf pivot(1) 500 400 20.61| 28.50|19.16 37.67
getrf pivot(2) 600 400 10.05( 24.48( 7.37 38.41
trsm_left kernel 600 400 9.02| 25.53| 7.74 36.85
getrf  pivot(3) 600 400 9.10| 24.15| 6.59| 38.46
gpu compute idle 200 300 46.58| 39.69| 9.25 1.17

Runtime increase (%) and Energy reduction (%): default power compared with
the most suitable power setting identified by speedup-energy-delay (SED)
and Euclidean distance (ED) per GPU task.
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Conclusion

* |nvestigation of GPU task-specific power-capping with NVIDIA GH200 superchip’s
automatic power-steering system

 Evaluation of two metrics—speedup-energy-delay and Euclidean distance—based
normalization—to determine optimal power limits per computational GPU task

« Comparing the optimal power-capping settings suggested by each one, the
Euclidean distance—based normalization is affected by the data distribution differently
than the speedup-energy-delay; ED more biased towards energy

« Significant energy savings are achievable through fine-grained power management

 |n the future, we will extend these methodologies, develop strategies for additional
domains, and adaptive power-capping optimizations
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Thank you!
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