

JUNE 10 – 13, 2025 | HAMBURG, GERMANY

Analysis of Application Power Characteristics Using Performance Counters on A64FX

<u>Ryoma Ohara¹</u> Keiji Yamamoto² Toshihiro Hanawa¹

1 The University of Tokyo, Japan 2 R-CCS, RIKEN

- 1. Introduction
- 2. Evaluation of Microbenchmarks
- 3. Analysis of PMU Counter Values
- 4. Estimation of Optimal Power Knob Setting
- 5. Related Work
- 6. Conclusion & Future Work

Introduction

!! Rising Electricity Costs at Centers

- further increases are not acceptable
- Few-percent energy savings
 - \rightarrow Saves hundreds of thousands of dollars in electricity costs

Execution Time

Specification of the A64FX[1]

Fugaku

- Total: 158,976 nodes(1 × A64FX per node) C
- TDP:180W
- Experimental Setup: <u>1–2 nodes</u>

Block diagram of the	A64FX CPU

Item	Description
Architecture	Armv8.2-A SVE 512 bit
Number of compute cores	48 cores
CPU frequency	2.0 / 2.2 GHz
Theoretical Performance	Double Precision (2.2GHz) : 3.3792 TFLOPS
Memory	HBM2 32 GiB, 1024 GB/s
Interconnect	Tofu Interconnect D (28 Gbps \times 2 lanes \times 10 ports)
I/O	PCIe Gen3 \times 16
Technology	7nm FinFET

Supercomputer "Fugaku" (RIKEN R-CCS)

Power Knob

Mechanisms to improve energy efficiency on Fugaku

Power Knob	Frequency [GHz]	# of FPU pipelines	retention mode
normal	2.0	2	off
boost	<u>2.2</u>	2	off
есо	2.0	<u>1</u>	off
retention	2.0	2	<u>on</u>
boost + eco	<u>2.2</u>	<u>1</u>	off
boost + retention	<u>2.2</u>	2	<u>on</u>
eco + retention	2.0	1	on
boost+eco+retention	2.2	1	on

Energy Reduction of Fugaku

Presentation Outline

1. Evaluation of microbenchmarks

2. Measurement of PMU counter values for each microbenchmark

3. Estimation of optimal power knob

Determine the optimal power knob based on metrics calculated from PMU counter values.

Investigate the correlation between PMU counter values and power knobs.

Investigate the power characteristics for each benchmark.

1. Introduction

- 2. Evaluation of Microbenchmarks
- 3. Analysis of PMU Counter Values
- 4. Estimation of Optimal Power Knob Setting
- 5. Related Work
- 6. Conclusion & Future Work

Microbenchmarks

X dgemm, stream, fft, ptrans are selected from [2], IS and EP from [3], and osu benchmarks from [4].

[2] HPC Challenge Benchmark. https://hpcchallenge.org/hpcc/, Online; accessed 19 December 2024.

[3] NAS Parallel Benchmarks. https://www.nas.nasa.gov/software/npb.html, Online; accessed 19 December 2024.

[4] osu-micro-benchmarks, https://github.com/forresti/osu-micro-benchmarks, Online; accessed 28 February 2025

Microbenchmarks

[2] HPC Challenge Benchmark. https://hpcchallenge.org/hpcc/, Online; accessed 19 December 2024.
[3] NAS Parallel Benchmarks. https://www.nas.nasa.gov/software/npb.html, Online; accessed 19 December 2024.
[4] osu-micro-benchmarks, <u>https://github.com/forresti/osu-micro-benchmarks</u>, Online; accessed 28 February 2025

[5] Sandia power api. http://powerapi.sandia.gov/, Online; accessed 19 December 2024.

Results – MPI benchma Eco types:

- MPI communication between adjacent 2 nodes
- 4, 8, 16, 32, 48 processes per node

Energy = <u>Power</u> \checkmark <u>Exec. Time</u> \rightarrow

With little increase in exec. time, <u>energy efficiency</u>

- 1. Introduction
- 2. Evaluation of Microbenchmarks
- 3. Analysis of PMU Counter Values
- 4. Estimation of Optimal Power Knob Setting
- 5. Related Work
- 6. Conclusion & Future Work

Measurement of PMU counter

- For each benchmark, PMU counter values were measured using the fapp command.
 - For example, PMU event numbers were specified in fapp as shown below.
 - fapp -C -d ./pmu -Hevent_raw=0x001b,0x8010,0x8028,0x8034,0x8038,0x0105,0x8043,0x0108 ./dgemm

	0x001b	0x8010	0x8028	0x8034	0x8038	0x0105	0x8043	0x0108
dgemm	3.20E+11	1.81E+11	1.81E+11	0	524	15165304	233419	209015

- Counter values were collected for all 183 events listed in A64FX PMU Events [6].
 - Measured with 8, 16, 32, 48 threads and 16, 32, 64, 96 processes.

e.g.

• Each benchmark was repeated as needed to ensure 15-20 seconds of execution time per measurement.

Counter values normalized by exec. time

Event Name	Description	Event Name	Description
FP_SPEC	# of executed FP instructions	STALL_FRONTEND	Cycles with no issuable instr. (frontend)
L2D_CACHE_REFILL	L2 cache refill count	BUS_READ_TOTAL_MEM	CMG: Local memory read count
L2D_CACHE_WB	L2 cache write-back count	BUS_WRITE_TOTAL_MEM	CMG: Local memory write count
ST_SPEC	# of executed store instructions	BUS_READ_TOTAL_TOFU	Reads from Tofu controller to CMG

- 1. Introduction
- 2. Evaluation of Microbenchmarks
- 3. Analysis of PMU Counter Values
- 4. Estimation of Optimal Power Knob Setting
- 5. Related Work
- 6. Conclusion & Future Work

Optimal power knob estimation

Based on the above analysis, the most important PMU events for understanding an application's power characteristics are:

Floating-point operations
 L2 cache refill/write-back
 Tofu accesses

We propose a method to compute key metrics from relevant PMU counter values and suggest the optimal power knob.

Metrics used for optimal knob estimation (based on Fujitsu Manual)

Event Name	Description
INST_SPEC	# of executed instructions
FP_SCALE_OPS_SPEC	# of executed FP instructions
FP_FIXED_OPS_SPEC	# of executed Advanced SIMD and scalar FP instructions
L2D_CACHE_REFILL	L2 cache refill count
L2D_SWAP_DM	Demand access hits in prefetch-prepared buffer
L2D_CACHE_MIBMCH_PRF	Prefetch hits in demand-allocated buffer
LD_SPEC	# of executed load instructions
ST_SPEC	# of executed store instructions
BUS_READ_TOTAL_TOFU	Reads from Tofu controller to CMG
BUS_WRITE_TOTAL_TOFU	Writes from Tofu controller to CMG

Floating-point operation rate =
$$\frac{FP_SCALE \times 512/128 + FP_FIXED}{INST_SP \times 2 \times 2 \times 8}$$
(1)
L2 miss rate =
$$\frac{L2_CA_REF - L2_SW - L2_PRF}{LD_SP + ST_SP}$$
(2)
Tofu access rate =
$$\frac{BUS_R_TOFU + BUS_W_TOFU}{INST_SP}$$
(3)

Metric calculation results

Metric calculation results

For each benchmark, measurements were taken for 32 combinations = 4 thread/process patterns \times 8 power knob settings.

	benchmark	optimal power knob
	dgemm	boost
	EP	boost+eco+retention
	stream	eco
N	fft eco+retention	
	ptrans	eco+retention
	IS	eco+retention
	osu_mbw_mr	eco+retention
	osu_allreduce	eco+retention

Optimal Power Knob

- <u>Energy</u> consumption normalized by normal value at each thread/process count
- Lowest energy consumption is defined as optimal power knob setting

Metric calculation results

Metric calculation results

- 1. Introduction
- 2. Evaluation of Microbenchmarks
- 3. Analysis of PMU Counter Values
- 4. Estimation of Optimal Power Knob Setting
- 5. Related Work
- 6. Conclusion & Future Work

Related Work

	Papadimitriou et al. [7]	Kusaba et al. [8]	Fan et al. [9]	Our Study
Target	<u>CPU</u> : X-Gene 2/3, single node	<u>CPU</u> : A64FX system	<u>GPU</u> : AMD MI100, NVIDIA V100 systems	A64FX, 1~2 node
Approach	Dynamic DVFS & core alloc. during monitoring	<u>Node reduction</u> under power constraints	Fine-grained freq. prediction by ML	App analysis for <u>dynamic power knob</u> <u>adjustment</u>
Method	Optimize settings based on L3 cache access rate	Reduce nodes based on power variation	Static feature extraction at compile time.	Determine the optimal power knob <u>using only</u> <u>PMU counter values</u>
Objective	Energy, ED ² P (ED ² P=Energy × Delay ²)	Peak system perf.	EDP, ED ² P, etc.	<u>Energy</u>

[7] Papadimitriou, G., Chatzidimitriou, A., & Gizopoulos, D. (2019, February). Adaptive voltage/frequency scaling and core allocation for balanced energy and performance on multicore cpus. In 2019 IEEE international symposium on high performance computer architecture (HPCA) (pp. 133-146). IEEE.
[8] Tomoya Kusaba, Yusuke Awaki, Kohei Yoshida, Shinobu Miwa, Hayato Yamaki, Toshihiro Hanawa, and Hiroki Honda. Power-efficiency variation on a64fx supercomputers and its application to system operation. In 2024 IEEE International Conference on Cluster Computing Workshops (CLUSTER Workshops), pp. 55–65. IEEE, 2024.
[9] Fan, K., D'Antonio, M., Carpentieri, L., Cosenza, B., Ficarelli, F., & Cesarini, D. (2023, November). SYnergy: Fine-grained Energy-Efficient Heterogeneous Computing for Scalable Energy Saving. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (pp. 1-13).

- 1. Introduction
- 2. Evaluation of Microbenchmarks
- 3. Analysis of PMU Counter Values
- 4. Estimation of Optimal Power Knob Setting
- 5. Related Work
- 6. Conclusion & Future Work

Conclusion

To improve energy efficiency on supercomputers, we conducted the following:

- <u>Analyzed correlations between PMU counter values, application power</u> <u>characteristics, and power knob settings for each benchmark.</u>
 - Demonstrated that using power knobs can reduce energy consumption by <u>up to</u> <u>28.4% (48 threads) and 53.8% (8 threads)</u> compared to normal settings, highlighting their effectiveness per application.
 - Through PMU-based power analysis, <u>we revealed correlations among PMU values</u>, <u>app characteristics</u>, and power knob choices.

Towards optimal power knob estimation:

Based on the analysis, we selected key PMU events to estimate app characteristics and proposed a method to choose the optimal power knob using only PMU counter values.

Future Work

Practical Power Knob Estimation

- Increase the number of target applications
- Include more complex, real-world applications
- Apply machine learning approaches

Dynamic Power Knob Adjustment

- Use ML model to change power knobs dynamically during execution
- Build a system for real-time estimation and control

Portability

• Explore applicability to other systems, especially GPUs

JUNE 10 – 13, 2025 | HAMBURG, GERMANY

Thank you for your listening!!