Experience on clock rate adjustment for energy-efficient GPU-accelerated real-world codes

EESP Workshop 2025@ISC Hamburg 13/6/2025

Giorgio Amati, <u>g.amati@cineca.it</u> Matteo Turisini, <u>m.turisini@cineca.it</u> Andrea Monterubbiano, <u>a.monterubbiano@cineca.it</u> Mattia Paladino, <u>mattia.paladino@e4company.com</u> Elisabetta Boella, <u>elisabetta.boella@e4company.com</u> Daniele Gregori, <u>daniele.gregori@e4company.com</u> Danilo Croce, <u>croce@info.uniroma2.it</u>

- Understand better the relation between energy & performance, at user level:
 - TTS: time to solution
 - ETS: energy to solution
- Tier-0 systems are very energy demanding
 - More than 10 MW
 - Energy Crisis
 - Opening Keynote talk
- Today target is ML/AI stuff
 - Thousands of FPU, with different precision (e.g.: FP16, BF16, ...)
- Can we save some energy?
 - Rule of thumb: 1 MW less in a year is more than 1 million euro saved!!!

Which is the starting point?

From a previous work on LBM optimization, we found that SM frequency reduction produce a gain (using A100@64GB).

Energy efficiency: a Lattice Boltzmann study https://doi.org/10.1145/3659997.366003
 Is this behaviour "general"?

LEONARDO CINECA

How?

- Working in user-space
- Based on nvidia-smi
- An energy based-profile
 - Time series of power, frequency, temperature
- Only NVIDIA GPU (for now...)
 - NVIDIA A100@80GB /NVIDIA GH200

1,	2025/05/28	20:40:22.666,	256.97,	1395,	1593,	54,	68,	97,	82,	P0
2,	2025/05/28	20:40:22.670,	261.30,	1395,	1593,	53,	68,	97,	82,	P0
3,	2025/05/28	20:40:22.673,	352.53,	1395,	1593,	54,	67,	97,	82,	P0
0,	2025/05/28	20:40:23.677,	263.97,	1395,	1593,	53,	67,	97,	82,	P0
1,	2025/05/28	20:40:23.681,	254.83,	1395,	1593,	54,	68,	97,	82,	Р0
2,	2025/05/28	20:40:23.685,	263.43,	1395,	1593,	53,	66,	97,	82,	P0
3,	2025/05/28	20:40:23.689,	350.73,	1395,	1593,	54,	69,	97,	82,	P0
0,	2025/05/28	20:40:24.693,	262.11,	1395,	1593,	53,	66,	97,	82,	P0
1,	2025/05/28	20:40:24.697,	253.64,	1395,	1593,	54,	69,	97,	82,	Р0
2,	2025/05/28	20:40:24.700,	262.78,	1395,	1593,	53,	67,	97,	82,	P0
3,	2025/05/28	20:40:24.704,	351.57,	1395,	1593,	55,	69,	97,	82,	P0
0,	2025/05/28	20:40:25.708,	270.65,	1395,	1593,	54,	67,	97,	82,	P0

ECINECA

Which code?

Four different codes were selected: they are known to be optimized and can run on O(1000) or more GPUs

- BGK3D: CFD Lattice Boltzmann Method based code. Fortran, MPI+OpenACC
- Pipe: CFD Finite Fifference code, Fortran, MPI+CudaFortran
- **QISG:** Quantum Spin-Glass Code, C+CUDA
- Bert: transformer-based models for natural language processing. It is written in Python and relies on TensorFlow.
- G. Falcucci et al. "Extreme flow simulations reveal skeletal adaptations of deep-sea sponges". In: Nature 595.7868 (July 2021)
- M. Bernaschi et al. "The Quantum Transition of the Two-Dimensional Ising Spin Glass". In: Nature 631 (2024)

JI FONAROC

 S. Pirozzoli et al. "One-point statistics for turbulent pipe flow up to Re_t=6000". In: J. of Fluid Mechanics 926 (2021)

What have we found?/1

Which impact of streaming multiprocessor (SM) frequency

BW=Bandwidth FP=Floating Point

CINECA

OpenCL_benchmark

What have we found?/2

Changing SM frequency has impact ETS, TTS and temperature

What have we found?/3

A similar behaviour for all codes (GH200)

GH200 Figures

What have we found?/4 (New results)

Leonardo node behaviour (4xA100@64 GB)

- REFMUL3: Finite Difference time domain code, C, MPI+OpenMP target offload
- Changing SM frequency via Slurm
- 24 replica using different nodes for each SM frequency

Which development?/1 (New results)

Node monitoring: looking for anomalous behaviour (4GPU)

JEONARDO

CINECA

Which development?/2 (New results)

Node monitoring: supervised model

- ETS can be reduced with an acceptable TTS increase
- The ideal SM frequency is code dependent
- Energy (e.g. time series) is also a useful observable
 Node monitoring
- Frequency reduction produces GPU temperature reduction

 Impact on system reliability?
- Even multi-GPU present a similar behaviour
 - Next step: multi-node
 - Next step: CPU/RAM contribution

How to face the problem? (personal view)

Energy must be a part of the "accounting" system

- Set Default SM frequency "quite low"
- Allow user to change SM frequency
 - If you increase frequency you pay "more" GPU hour
 - If you decrease frequency you pay "less" GPU hour
- Priority as a function of frequency
 High frequency --> lower priority
- Force run at high frequency during the night

Acknowledgments

- Giacomo Falcucci (Tor Vergata Univ.)
- Sergio Pirozzoli (La Sapienza Univ.)
- Tiago Ribeiro (ACH-MPG)
- Filipe da Silva (IST-IPFN)
- Massimo Bernaschi (CNR/IAC)
- Daniele Di Bari (CINECA)
- Anna Nikishova (CINECA)
- Matteo Angelinelli (CINECA)
- Donatella Sforzini (CINECA)

JI EONARDO

Thanks!

CONNECTING THE DOTS

