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• The size of AI models is continuously growing over time 

• Only a small subset of players is capable of: 

o Training 

o Fine-tuning

oor just even Evaluating

newest (and deeper) DL models based on attention mechanism. 

MOTIVATION
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• The more resources the better, but can we do more?

• Can we question our way of allocating resources to researchers?

• Most of them do not have the a "hardware aware" background:

oMath

oPhysics

o Statistics

MOTIVATION
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• Supercom nodes are 

classified according

with tiers: 

SUPERCOM EXPERIMENTAL SETUP
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a) Users identify themself and 
getthe authorization to use 
theplatform

b) They get access to a subset of 
SUPERCOM resources 
to"profile" their 
workloads(sessions)

c) Jobs are scheduled in 
a Slurmfashion according to a 
FIFOqueue

d) Jobs are 
actually excuted andmonitored 
during training

e) When a target accuracy 
isachived the model goes back 
tothe user

DARE-ML
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• Three different LLM are selected, each representing an incremental level of complexity interms 
of trainable parameters and virtual memory requirements:

• lucadiliello/bart-small, 70.5M, 7GB;

• google/flan-t5-small with 77M, 11GB;

• google/flan-t5-base with 248M, 24GB.

• We finetuned those models on DialogSum, a well-known dialog summarization dataset 
using LoRA+.

• Cross-entropy was chosen as the optimal loss function for all models tested. The learning rate 
is set to 2×10−4 , and the LoRA dropout rate to 0.1 across all models.

• Batch size is configured at 4 for the two smaller models and reduced to 2 for the mostmemory-
intensive model.

FINETUNING TASK
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PROFILING: FORECASTING MODEL PERFORMANCE 
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PROFILING: PROFILING VS FULL TRAINING 
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BALINES 

• Session FIFO: Time limited sessions are dedicated to jobs, 
afterthe max time duration for each job, this 
is suspended and the nextjob execution is schedules

• Baseline FIFO: Jobs are executed 
until completion guaranteeringthe same order of arrival.
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RESULTS: SCALING THE NUMBER OF USERS

DARE-ML scheduler achieves the lowest total waiting time (a), minimizes average waiting time 
per user (b), and yields the shortest Avg. JCT (c) across all user counts.
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RESULTS: GPU USAGE AND TOTAL ENERGY CONSUMPTION
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RESULTS: VISUAL SCHEDULING OF BASELINE FIFO 
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RESULTS: VISUAL SCHEDULING OF SESSION FIFO 
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RESULTS: VISUAL SCHEDULING OF BASELINE OF DARE-ML 
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CONCLUSIONS

• Model profiling using training reduces resource use, lowering 
average JCT and wait times by

o15% when retraining to overfitting,

oand up to 80x with loss-aware interruptions.

• In addition, in high-demand cases, energy consumption drops 
byup to 83x.
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